Week 7 Blog post/ project backround

Corinne Hrnicek Dr. Chapman Phoenix College Stem Train Scholarship 3 October 2023 Project Background Research question: Can teachable machine learning be trained to identify bacteria accurately? Hypothesis: If we train teachable machine learning, it will accurately identify bacteria. What is currently known about the topic is that there is a “well-known system, Mycin, which can diagnose bacterial infections. The input to Mycin is the set of symptoms experienced by a patient. Based on a set of rules triggered by each symptom, Mycin suggests the type of bacteria that could cause the problem.” (Lerner). “The researchers plan to use their platform to study more bacteria and media types, using the information to build a training data library of various bacterial types in additional media to reduce the collection and detection times for new samples.” (New) It is important to expand on this current knowledge because “Expert systems cannot pass the Turing test because of their limited domain of expertise.”(Lerner) We can do more research and improve accuracy. Another reason this research is important is that “This approach eliminates the need for time-consuming culture-based colony isolation and resource-intensive molecular approaches for bacterial identification.”(Ma). It is important to work on this specifically because “ relatively few studies have been conducted to optimize BPA removal using microalgae-bacteria consortia and artificial intelligence to predict degradation rate, and even fewer research have been conducted on the kinetic models in the degradation of BPA. (Fu) This topic was selected because it is significant in medicine, biology, and technology. Learning more about this topic and researching to identify bacteria faster is essential. An example of how teachable machine learning can identify bacteria in a medical setting is stated in the article. “Gram-negative bacteria (ESBL-GNB) accounting for individual- and group-level confounding using machine-learning methods. Patients hospitalized between September 2010 and June 2013 at six medical and surgical wards in Italy, Serbia and Romania were screened for ESBL-GNB”(Tacconelli). That is why it is important to research this topic. The research will be conducted by observing bacteria, taking pictures, and experimenting with teachable machine learning. “In the last decade, NIR spectroscopy has been applied to identify bacteria, fungi, and viruses, combined with Machine Learning algorithms and Multivariate Analysis techniques”(Farias,). In a similar way, the bacteria will be observed when experimenting with a teachable machine. “The clustering algorithms…applied to the dataset) and their performance was evaluated by means of accuracy”(Duran) I anticipate finding that teachable machine learning can be trained to Identify bacteria. “Ranking and selection of probiotic potential bacteria for harnessing as antibacterial agents in plant tissue cultures were performed using supervised machine learning models.”(Sadeghi). Another source also supports the hypothesis that “a machine learning-based method can perform fast estimation of the concentration of indoor airborne culturable bacteria. “(Liu) 5. References Durán, C., Ciucci, S., Palladini, A., Ijaz, U. Z., Zippo, A. G., Sterbini, F. P., Masucci, L., Cammarota, G., Ianiro, G., Spuul, P., Schroeder, M., Grill, S. W., Parsons, B. N., Pritchard, D. M., Posteraro, B., Sanguinetti, M., Gasbarrini, G., Gasbarrini, A., & Cannistraci, C. V. (2021). Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome. Nature Communications, 12(1), 1926–1926. https://doi.org/10.1038/s41467-021-22135-x Farias, L. R., Panero, J. D., Riss, J. S., Correa, A. P., Vital, M. J., & Panero, F. D. (2023). Rapid and Green Classification Method of Bacteria Using Machine Learning and NIR Spectroscopy. Sensors (Basel, Switzerland), 23(17), 7336. https://doi.org/10.3390/s23177336 Fu, Wenxian, et al. “Enhanced degradation of bisphenol A: Influence of optimization of removal, kinetic model studies, application of machine learning and microalgae-bacteria consortia.” The Science of the Total Environment, vol. 858, 2023, p. 159876, https://doi.org/10.1016/j.scitotenv.2022.159876. Lerner, K. L. (2022). Artificial Intelligence. In Gale Science Online Collection. Gale. https://link-gale-com.ezproxy.pc.maricopa.edu/apps/doc/XJYXMI242056316/SCIC?u=mcc_phoe&sid=summon&xid=2e8ed34d Liu, Z., Li, H., & Cao, G. (2017). Quick Estimation Model for Indoor Airborne Culturable Bacteria Concentration: An Application of Machine Learning. International Journal of Environmental Research and Public Health, 14(8), 857. https://doi.org/10.3390/ijerph14080857 Ma, L., Yi, J., Wisuthiphaet, N., Earles, M., & Nitin, N. (2023). Accelerating the Detection of Bacteria in Food Using Artificial Intelligence and Optical Imaging. Applied and environmental microbiology, 89(1), e0182822. https://doi.org/10.1128/aem.01828-22 "New Machine Learning Technique Identifies Different Bacteria in Seconds." Clinical Lab Products, vol. 52, no. 2, Mar.-Apr. 2022, p. 6. Gale Health and Wellness, link.gale.com/apps/doc/A702628059/HWRC?u=mcc_mesa&sid=summon&xid=d746a4f3. Accessed 4 Oct. 2023. Sadeghi, M., Panahi, B., Mazlumi, A., Hejazi, M. A., Komi, D. E., & Nami, Y. (2022). Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of superior bacteria for application as biocontrol using machine learning models. Food Science & Technology, 162, 113471. https://doi.org/10.1016/j.lwt.2022.113471 Söylemez, Ü. G., Yousef, M., Kesmen, Z., Büyükkiraz, M. E., & Bakir-Gungor, B. (2022). Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models. Applied Sciences, 12(7), 3631. https://doi.org/10.3390/app12073631 Tacconelli, E., Górska, A., De Angelis, G., Lammens, C., Restuccia, G., Schrenzel, J., Huson, D. H., Carević, B., Preoţescu, L., Carmeli, Y., Kazma, M., Spanu, T., Carrara, E., Malhotra-Kumar, S., & Gladstone, B. P. (2020). Estimating the association between antibiotic exposure and colonization with extended-spectrum β-lactamase-producing Gram-negative bacteria using machine learning methods: a multicentre, prospective cohort study. Clinical Microbiology and Infection, 26(1), 87–94. https://doi.org/10.1016/j.cmi.2019.05.013